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Introduction 
 
 To understand MRI, it is first necessary to understand 
the physics of proton Nuclear Magnetic Resonance (NMR).  The 
most important site of this resonance relevant to MRI is the 
nucleus of the hydrogen atom in water.  While other protons 
occurs within biological molecules, water represents the most 
important site for MRI due to the concentration of protons in 
water and the dynamical properties of water. 

The proton is a fundamental nuclear particle which 
exhibits charge, mass and spin (FIGURE 1).  While the first of 
these two concepts is familiar, the notion of spin is not as well 
appreciated.  As the name suggests, it can be thought of as a 
rotation of the nucleus about its axis which in conjunction with 
the charge of the nucleus, gives the proton a magnetic property 
similar to a small bar magnet.  However, in addition to the 
magnetic property of the nucleus, the spin together with the mass 
of the proton, gives it a property referred to as angular 
momentum.  The combined effect of the spin, charge and mass 
are the three ingredients, which are responsible for NMR.  
Specifically, when a proton is placed in an applied magnetic field, it will precess or wobble. This precession is 
similar to that of a spinning gyroscope when placed in the earth’s gravitational field.  In this case, the gyroscope 
appears to wobble about its axis at a specific frequency dictated by the strength of the gravitation field and the 
rotation characteristics of the gyroscope.  In a similar manner, the proton’s precessional frequency, also known as 
the Larmor frequency, is dictated by the fundamental properties of the proton and is proportional to the strength of 
the magnetic field.  For example, at a field strength of 1 Tesla (approximately 30,000 times stronger than the earth’s 
magnetic field), the Larmor frequency is 42.57 Mhz.  Doubling the magnetic field strength to 2 Tesla would increase 
the Larmor frequency to 85.14 MHZ.   
 The scaling factor between Larmor frequency and 
magnetic field is known as the gyromagnetic ratio ( and is 
tabulated in (FIGURE 2) along with the relative sensitivity of 
the NMR signal for various nuclei of biological interest.  It is 
noteworthy, that not all nuclei can generate an NMR signal.  
Only isotopes with an odd number of protons or neutrons have 
a non-zero spin which permits the formation of an NMR signal.  
This figure shows that the nucleus of hydrogen, gives the 
biggest signal largely due to its gyromagnetic ratio and the fact 
that the most abundant isotope of hydrogen exhibits a spin.  In 
comparison, the relevant isotopes of carbon, sodium or 
phosphorous are less abundant and therefore generate a much 
weaker NMR signal.  
 
Detecting and Exciting NMR 
 
 As indicated above, a proton has a specific resonance frequency for a fixed magnetic field.  We can 
represent the collective magnetic properties of the protons as a vector (FIGURE 3) corresponding to the “bulk 
magnetization” which precesses about the magnetic field Bo at a frequency given by γBo.  In order to detect this 
magnetization, we use a coil of wire which is connected to a sensitive amplifier (FIGURE 3) which is in turn tuned 
to the Larmor frequency.  The rotating magnetic field from the magnetization will induce a tiny NMR signal in the 
coil, which oscillates at the Larmor frequency. Only the time varying part of the magnetization is capable of 

Figure 1.  The precession of a proton in a 
magnetic field Bo, arises from its charge, mass 
and spin. 
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Figure 2.  NMR parameters for key biological 
elements



inducing a signal in the coil and as such only the rotating 
component of the magnetization in the x-y plane (FIGURE 3) 
is detectable by this method.  This component of the 
magnetization is referred to as the “transverse” component as 
opposed to the “longitudinal” component parallel to the Bo 
field.  This also means that the orientation of the receiver coil 
must be such that its axis lies in the transverse plane 
(FIGURE 3), so that the changing magnetic field of the 
transverse component can couple with the coil and induce a 
signal.   
 Normally, the magnetization is aligned parallel to the 
Bo field (along the z axis) and as such cannot precess.  In 
order to generate an NMR signal, we must tip the 
magnetization away from this equilibrium alignment so that a 
component of the magnetization lies in the transverse plane 
where it is free to precess.  To achieve this, the spins are 
exposed to an alternating “B1” magnetic field (FIGURE 4) 
which is tuned to the Larmor frequency. As the Larmor 
frequencies are typically in the Mhz range, these pulses are 
referred to as radio frequency or “RF” pulses.  Unlike the Bo 
field, the direction of the B1 field is in the transverse plane. 
By virtue of this alternating applied magnetic field, the spins 
can progressively absorb energy and by tipped away from the 
longitudinal axis to create a component into the transverse 
plane.  The longer the duration of the applied field, or the 
greater its field strength the greater the tip angle which can be 
achieved.  By careful choice of the duration and strength of 
this applied B1 field, the magnetization can be tipped to any 
angle relative to the Z-axis.  
 
The Rotating Frame of Reference 
 
 The motions of the magnetization vector are 
complex as they rotate out of alignment with the Z-axis and 
precess about the Z-axis during excitation and relaxation.  In 
order to simplify our picture of these motions, it is common to view the spin system from a special frame of 

reference which itself rotates about the Z-axis 
(FIGURES 5 & 6).  To appreciate this concept, imagine a turntable that revolves about the Z-axis at the Larmor 
frequency carrying a small camera (FIGURE 5).  As viewed from the “Laboratory” frame, we see the magnetization, 

Figure 3.  The induction of the NMR signal in a tuned 
receiver circuit. 

Figure 4.  The excitation of NMR by the application of 
an RF pulse at the spin Larmor frequency. 

Figure 5.  Viewed from the rotating frame, the 
precessing spin appears motionless. 

Figure 6.  A precessing spin precessing while a camera 
is mounted on a turntable which rotates at the same 
Larmor frequency. 



turntable and the camera rotating about the Z-axis in synchrony.  However, if we view the magnetization vector 
from the point of the view of the rotating camera, we would see that the magnetization vector would appear 
stationary with a fixed alignment relative to the Z without any precession (FIGURE 6).  From this new point of 
view, we see that the precessional motion of the spins can be simplified.  Furthermore, if the spin precesses at a 
frequency which is slightly slower or faster than the frequency of the rotating frame of reference, the spin will 
precess in this frame at a frequency which corresponds to the difference between the spin precession frequency and 
that of the rotating frame.  Thus, the spin can appear to precess in either direction with its frequency dictated by this 
difference frequency.   
 
Spin Dephasing and Transverse Signal Decay 
 
 In order to appreciate the contrast mechanisms in MRI, 
it is necessary to understand how the magnetization of the 
multitude of spins in the object combines to produce the NMR 
signal. Recall, that vectors which are parallel or “in-phase” 
(FIGURE 7), add in proportion to their individual lengths.  
However, if the vectors are not aligned, or are slightly “out-of-
phase”, their sum will reflect both their magnitudes and 
orientations as shown in FIGURE 7.  Thus if we consider spins 
with identical frequencies which are matched to the rotating 
frame, the magnetization of each spin will add in phase and thus 
be the numeric sum of their individual magnetization.  However, 
if we consider a situation in which each spin experiences a 
slightly different magnetic field, then each will have a slightly 
different precession frequency (FIGURE 8). Assuming that the 
spins are initially aligned, this difference in frequency will 
cause the phase angle of each component of the magnetization 
to progressively drift out of alignment.  Thus with increasing 
time, the sum of the individual magnetization vectors will 
decrease due to this progressive de-phasing resulting in a decay 
of the NMR signal (FIGURE 8). The time constant for this 
signal decay can be characterized as that time needed to reduce 
the signal to 1/e or 37% of its maximum value and is referred to 
as T2*.   
 At this point, it would be natural to ask what 
mechanisms cause the spins to experience different magnetic 
fields throughout the tissue.  First, we should categorize these 
field variations into two groups; those which are fixed in time 
as distinct from those which change with time.  Fixed 
inhomogeneities of the magnetic field could result from the 
design of the magnet used to form the Bo field and as such are 
uninteresting from a biological point of view.  However, even 
with a perfect magnet, the tissues being imaged can distort the 
fields as a result of their magnetic properties.  Changes in 
tissue magnetic “susceptibility” can generate small field 
gradients on the order of a few parts per million than can vary 
throughout the tissue.  As these inhomogeneities are fixed, the 
phase angle of individual spins will grow at a constant rate.    
 In contrast to fixed field variations, there are other 
mechanisms that can generate time varying field 
inhomogeneities.  These can arise from the fact that the 
protons themselves are slightly magnetic which can exchange 
magnetization or due to diffusive movement of spins in 
microscopic magnetic field inhomogeneities. This decay 
mechanism is referred to as spin-spin relaxation and has a 
decay time or T2 (FIGURE 9). The key point is that spin-spin 
relaxation arises from these time varying magnetic spin 

Figure 7.  Addition of vectors taking into 
account their orientation or phase. 

Figure 8.  Signal loss due to spins loosing 
phase coherence.

Figure 9.  Spin-Spin relaxation arising from random 
motion of spins in magnetic field gradients and spin-
spin interactions. 



interactions.  As such, the rate of spin dephasing arising from spin-spin interactions is not constant.  In any NMR 
experiment, spins will experience spin dephasing from both fixed and time varying field changes and both of these 
factors contribute to the decay time constant T2*.  However, using a special combination of excitation pulses, 
known as a spin-echo pulse sequence, it is possible to measure the signal decay time constant arising only from the 
time varying changes in the magnetic field to quantify T2.   
 
Spin-Spin Relaxation and T2 Weighted MRI 
 
 The spin-echo pulse sequence uses two RF pulses as 
shown in FIGURE 10.  The first pulse tips the spins by 90o to 
force the total magnetization onto the transverse plane.  
Immediately after this pulse, the spins are in-phase and the 
NMR signal is maximized. Shortly thereafter, the spins 
undergo dephasing and the signal decays.  At some arbitrary 
time (TE/2) after the first RF pulse, a second RF pulse is 
delivered which rotates all the spins by an additional 180 o as 
shown in FIGURE 10. This moves the spins into an 
arrangement which mirrors their positions just prior to the 180o 
pulse.  At a later time TE seconds after the 90o RF pulse, we 
find that the signal reappears to form an ‘echo’.  The reason for 
this ‘spin-echo’ can be understood by considering the phase of 
a single spin.  During the first TE/2 seconds, a spin will 
accumulate a phase angle of θ degrees (relative to the positive 
Y axis).  After the second RF pulse, the phase of this same spin 
is now 180-θ degrees.  This indicates that the phase of the spin is exactly θ degrees from the negative Y-axis.  Thus, 
assuming that the spin continues to accumulate phase at the same rate, the phase will align with the negative Y-axis 
in an additional TE/2 seconds after the 180o pulse, or TE seconds after the original 90 o RF pulse.  This argument 
holds true for all the spins in the system, so that all the spins will re-align along the negative Y-axis to form a spin-
echo at a time TE.   

If the rate of dephasing for all spins were constant during the TE interval, the magnitude of the transverse 
magnetization at TE would be identical to the magnetization immediately after the first 90 o RF pulse.  However, the 
time varying nature of spin dephasing outlined above, will create small variations in the phase angle accumulation 
for each spin before and after the 180 degree RF pulse.  The net result is that the spins will not perfectly align at time 
TE resulting is a small net spin dephasing and signal decay.  The longer the TE interval, the greater the opportunity 
for spin dephasing resulting in a greater signal loss.  

A plot of echo amplitude for varying TE will show a signal decay with a time constant T2 (FIGURE 9).  By 
this experiment, it should be clear, that only the signal loss associated with the time varying component of spin 
dephasing will contribute to the echo amplitude and thus allows us to measure T2 independently of static field in 

homogeneities.  As a result, T2 will always be longer 
than T2* as the latter time constant suffers from both 
static and time varying dephasing while T2 only 
experiences time varying dephasing.  

 The consequence of T2 relaxation 
on MRI is very briefly summarized in FIGURE 11.  
In the case of a spin-echo MR pulse sequence, the 90o 
and 180o pulses are used to form the spin-echo from 
which the MR image is formed and it is the 
magnitude of this echo which determines the 
brightness in the MR image. If we have two tissues of 
differing T2 values, the echo amplitudes for each 
tissue at time TE will differ depending on their 
respective T2 values. Typical T2 times for tissues in 
the brain are summarized in FIGURE 12.  Thus in a 

T2 weighted MR image, CSF will be brighter than either grey or white matter, consistent with the tabulated values 
of FIGURE 12.   
 
 

Figure 10.  The Spin-Echo experiment which 
is the foundation for the measurement for spin-
spin or T2 relaxation times. 

Figure 11.  The effect of spin-spin relaxation on the 
brightness of tissues in a spin-echo MR image. 



The Spin-Lattice Relaxation Time and T1 Weighted Imaging 
 
 In the preceding section, we reviewed how spins 
dephase and cause a loss of detected signal.  However, it is 
important to note that spin dephasing is a loss of the 
arrangement of spin orientation after the initial excitation 
pulse.  In this case, the energy which has been deposited by 
the RF excitation pulse has not been dissipated but only lost 
to detection.  However, if we wait longer, this energy will 
slowly leave the spin system and be distributed throughout the 
sample or the “lattice”.  The time required for this dissipation 
is referred to as the spin-lattice or T1 time constant and tend 
to be longer than the T2 time constant of a given tissue.  As a 
result, after the spins have undergone signal loss from 
dephasing, the magnetization slowly grows along the z-axis 
until the equilibrium magnetization is finally reached 
(FIGURE 13).  The time needed to reach 63% of the 
equilibrium longitudinal magnetization is referred to as the T1 
time constant.  T1 values for biological tissues generally 
increase with Larmor frequency whereas T2 times are 
relatively constant. Typical values for the head are shown in 
FIGURE 13 for a field strength of 1.5 Tesla. Comparing 
values from FIGURES 12 and 13 is clear that T1 tend to be 5 
to 10 times longer than T2 for these tissues at 1.5 Telsa.  
 Images reflecting T1 are commonly made in MRI 
and the details of image contrast are complex and beyond to 
scope of this lecture.  However, a very simple presentation is 
illustrated in FIGURE 14.  As we will see, spin-echo MR 
images are made with multiple repetitions of a 90o and 180o   

pulse combination followed by the detected spin-echo.  This 
triplet of pulses is repeated multiple times every TR seconds 
in order to gather enough data for form an MR image.  Thus it 
can be seen that the extent of recovery of equilibrium 
magnetization during the TR interval will vary depending on 
the tissue T1 value.  A tissue with a longer T1 will recover less 
and contribute less to the spin-echo relative to a tissue with a 
shorter T1 relaxation time. As such, the short T1 tissue will 
appear brighter than the longer T1 tissue.  While we have made 
this point in the context of spin-echo MRI, it is true for all MRI 
techniques requiring multiple excitations to collect MRI data.  
 
Summary of Relaxation Mechanisms for Proton MRI 
 
 We have seen that there are two main relaxation 
mechanisms of interest in proton MRI; namely, spin-lattice 
(T1) and spin-spin(T2) relaxation.  Spin-spin relaxation is an 
example of a relaxation mechanism which is associated with a 
loss of spin order or phase and is seen as a transverse decay of 
signal after the initial spin excitation.  The spin-spin time 
constant T2 is measured with a spin-echo experiment.  A related time constant T2* is also seen as a signal decay 
from spin dephasing and is the time constant observed by simply observing the signal decay directly.  In this case 
T2* is shorter than T2 as it includes dephasing mechanisms from both constant and time varying magnetic field 
inhomogeneities throughout the tissue.   
 In contrast, T1 is the time needed for the spin system to dissipate the energy which was deposited in the 
tissue by the initial RF excitation pulse.  In liquids, this energy dissipation is slow by comparison to the time to 
cause the spin system to dephase, thus T1 times are much longer than either T2 or T2*.  From this discussion, it is 
clear that T2 can never be larger than T1.  

Figure 12.  Table of  T2 relaxation times for 
various tissues.

Figure 13.  T1 or Spin-Lattice relaxation times at 
1.5 Tesla for various tissues. 

Figure 14.  T1 modulation in spin-echo MRI. 



 Image contrast arising from either T2 or T1 relaxation mechanism is complex and is modulated by the 
timing of pulses sequences and size of the flip angles resulting from the excitation pulses.  Changing the TE times of 
spin-echo experiments will alter the T2 weighting while altering the TR interval or flip angle will control the T1 
weighting in MR images.  
 In the preceding sections, we discussed the very basic physics of how NMR signals are generated and the 
time constants dictating the nature of the evolution of the transverse and longitudinal magnetization.  In the 
following sections, we will describe how, the unique physics of NMR can be used to create beautiful images of the 
anatomy.  
 
Image Formation Based on NMR 
 
 MRI is unique as a medical imaging method in terms of the relation between the detected signals and the 
final image.  As in any digital imaging method, the challenge of MRI is to define the intensity of the MRI signal for 
an array of pixels corresponding to differing points throughout the anatomy.  However, unlike all other imaging 
methods in current use in medical imaging, the signal detecting device (receiver coils) cannot be collimated to 
restrict the signal to a specific location as is done in x-ray imaging, 
ultrasound or radionuclide imaging.  Rather, the MR imaging task is 
unique, as the detected signals originate from the entire object 
rather than a single point within it.  Thus in the following sections, 
we illustrate the mechanisms used to achieve a MR images based on 
the fact that spins precess at a frequency proportional to the 
surrounding magnetic field.  We will do this by recognizing that our 
goal is to find the brightness of pixels located in a three dimensional 
co-ordinate system based (X,Y and Z) and use three related 
techniques to achieve this based on selective excitation, frequency 
and phase encoding (FIGURE 15).  To achieve this we will 
deliberately distort the magnetic field in the magnet to provide 
spatial encoding through the use of magnetic field gradients.  In the 
next section, we will describe the meaning of these gradients which 
will become critical to our understanding of MRI.  
 
Magnetic Field Gradients 
 
 Great care is used to build the magnets for MRI so as to achieve a highly homogeneous magnetic field  
within the magnet bore.  However, in order to create MR images, these fields must be distorted in a precise and 
controlled manner though the applications of magnetic field gradients.  To illustrate this more fully consider the 
object in the presence of a gradient in the X direction as shown in 
FIGURE 16.  A gradient in the X direction means that the field 
changes only in the X direction and is constant for any point in a Z-Y 
plane.  Furthermore, the field on this plane either increases/decreases 
with the +ve X position and decreases/increases with the -ve X 
location.  Similarly, a gradient in Z means that the field is 
proportional only the Z location and is constant in a X-Y plane.  
Finally, the Y gradient causes the field to change only in the Y 
direction and is constant within a Z-X plane.  In addition, to these 
gradients having a direction such as X, Y or Z, they can also have a 
magnitude.  In this case, the meaning of the magnitude of the gradient 
refers to the rate with which the field changes per unit distance.  
Typical gradients can have values of 10 mT/m, meaning that the field 
changed 10 mT (i.e. 10-2 Tesla) for every meter of distance moved in 
object. Thus in comparison to the size of the applied magnetic field 
(~1 Tesla), we see that these gradients represent very small 
perturbations (~1%) to the overall field.  As these gradients have both magnitude and direction they can be 
represented as vectors and can add to generate gradients in any direction by the simultaneous application of 
component X, Y and Z gradients.  
 
 

Figure 15.  The spatial localization task 
and the MRI methods used to achieve 
them. 

Figure 16.  An illustration of the concept of 
a magnetic field gradient in the x-direction.



Selective Excitation 
 
 The task of defining the 3D distribution of image brightness generally starts with “selective excitation”. As 
the name implies, this process creates a slab of tissue which is excited so that transverse magnetization is restricted 
to a specific plane of prescribed location and thickness.  The technique involves the combination of NMR resonance, 
magnetic field gradients and a band limited RF excitation pulse.  An analogy to selective excitation is illustrated in 

FIGURE 17.  Consider an “excitation” tuning fork set to ring at 440 
Hz (the note A) as shown on the left side of FIGURE 17.  Further 
consider that nearby is an array of tuning forks which range in 
frequency from the notes F through C with the tuning forks 
arranged in line as shown on the right side of this figure.  When the 
excitation tuning fork is stuck, it moves air at a frequency of 440 
Hz.  This creates an oscillating pressure wave propagates until all 
the tuning fork are bathed with oscillating air molecules.  However, 
only the tuning fork tuned to 440 Hz can absorb energy in 
synchrony with the moving air and begin to ring or resonate.   
However, the other tuning forks, cannot resonate with the moving 
air and remain silent.  If we were to dampen the excitation tuning 
fork, the A note in the tuning fork array would continue to ring and 
emit its own sound.  We know however, that the tuning forks were 

arranged in a linear array from F to C and since we used A to excite the array, we know that the middle tuning fork 
must have undergoing excitation.  By this means, we can excite a specific location in space by the choice of the 
excitation tuning fork.  It follows that using an excitation tuning fork of higher or lower frequency will move the 
excited region to right or left. 
 This simple analogy is perfectly adaptable to NMR 
selective excitation.  In this case, the spins can absorb 
energy only if the RF frequency is matched to the Larmor 
frequency. To create an arrangement similar to the line of 
tuning forks, we use a magnetic field gradient as discussed 
above.  In this situation, the magnetic field changes along 
the axis of the object as shown in FIGURE 18.  In this case, 
the near end of the cylinder experiences a smaller field and 
lower Larmor frequency than the opposite end.  Thus, we 
can consider the object to be composed of different slabs of 
varying Larmor frequency.  Applying the RF excitation to 
match a frequency for the centre slab will rotate 
magnetization in this slab to the transverse plane where it 
will continue to precess.  By controlling the range of 
frequencies used in the excitation pulse, we can control the 
width of the slice while controlling the centre frequency of 
the pulse, we can control the location of the slice.  By this means, we have now created precessing magnetization in 
a slab of a specific location and slice thickness.  The task which remains, is to define the brightness of the spins 
within this slab.  
 
Fourier Magnetic Resonance Imaging 
  
 In order to explain the basics of how the in-plane 
localization task is performed, we will proceed in a two-step 
manner as illustrated in FIGURE 19.  First, we will show 
how MR images can be constructed from so-called K-space 
data. Once an intuitive understanding of the nature of K-
space has been established, we will then indicate how the 
MR imaging system generates the image signals in the form 
of the required K-space data.  
 
 
 

Figure 17.  An array of tuning forks which 
are undergoing selective excitation by an 
acoustic source tuned to the note A=400 Hz. 

Figure 18.  A magnetic field gradient is Z is 
used to create a range of Larmor frequencies 
which allow selective excitation of a specific 

Fourier MR Imaging

MR
Imager

Reconstruct
K-space

Figure 19.  Fourier MRI involves the 
generation of data in K-space and the 
reconstruction of this data for form the final MR



Image Space and K-Space 
 
 To start our understanding of how MR images are 
formed, we need to understand the relation between the MR 
image and its “K-space” representation. As shown in FIGURE 
20, we see that the image has coordinates X and Y while the K-
space data has coordinates Kx and Ky.  The units of X and Y 
are in units of distance (i.e. centimeters) while the units of Kx 
and Ky are in units of 1/distance (i.e.   centimeters-1).  Thus we 
see that the K-space dimensions are somewhat unfamiliar as 
they are expressed in reciprocal distances.  The gray scale of 
the K-space data reflects the value of the data at positions Kx 
and Ky.    
 

 In order to understand the meaning of the K-space 
representation, let us consider the simple problem of attempting to 
construct a mathematical formulae for the one-dimensional object or 
target function shown in FIGURE 21.  The function is unusual, as it 
switches discontinuously from 0 to 1 over the region of interest 
(ROI).  In order to appreciate how this can be done, we first consider 
the average value of this function which devotes 50% of its range to 
have a value of 0 with the remaining 50% with a value of 1, to give 
an average value of 0.5.  So our first approximation of the target 
function is a constant of 0.5.  Next we will add two sinusoidal 
function of varying amplitude and frequencies of 1 cycle and 3 
cycles over the ROI.  Thus these sine functions have an oscillation 
density or “spatial frequency” of a certain number of cycles per ROI.  
We can see that these frequencies have units of cycles per unit 

distance which are the units of our K-space coordinates.  When 
we add the constant and these two sine curves, we see that 
result oscillates over the right range and begins to approximate 
our target function (shown dotted in FIGURE 22).  Rather than 
drawing tedious sine functions over the ROI, let us simplify our 
representation by plotting a graph (FIGURE 23) where we plot 
the amplitude of the sine functions versus their spatial 
frequency.  This is a short hand graphical notation for the 
family of sine functions which, when added approximate the 
target function. The horizontal axis has units of spatial 
frequency (cycles/distance) while the vertical axis has units of 
amplitude.  This is the K-space representation of our target 
function which is composed of three sine functions of 
frequency 0, 1 and 3 cycles/ROI.  We can add more sine 

functions (FIGURE 24) until we become arbitrarily close to the 
desired target function.  The K-space representation and image 
domains are related through a mathematical operation called a 
Fourier transform. While the details of how this transform 
operates is beyond the scope of this lecture, the essential point is 
that it calculates the amplitudes and frequencies of sine curves 
chosen such than when they are all added together, we get the 
desire target function.     
 
 In order to represent a two dimensional function, such 
as a head image, one needs to use sine functions to exist in two 
directions.  This is shown in FIGURE 25, where we show the K-
space representation of the head image of FIGURE 20.  Again, 
the relation between the K-space data and the image data are 
through a Fourier Transform.  The brightness of a single point in 

Figure 20.  The relation between image space 
and K-space. 

MR-Image
Raw or "K-space"

Data
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MR Image and K-Space
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Figure 21.  A one dimensional object to 
study K-space and Fourier synthesis.

Figure 22.  Using a constant and sinusoidal 
functions (left) to create an approximate version 
(right-yellow) of the target function (right-dotted). 

Figure 23.  The K-space representation 
(left) of the Fourier components to create 
the target function (right). 



the K-space domain, reports the amplitude of the sine function, 
while the location of the point tells us its frequency and orientation.  
If we consider varying points (FIGURE 25) we can see that sine 
patterns of varying frequency and orientation are represented.  To 
simplify our language, lets us refer to these patterns of variously 
oriented sine functions as “stripes”.  The intersection of the dotted 
lines represent the points of Kx=Ky= 0. For point on the Kx axis the 
strips are vertical.  For points on the Ky axis the strips are 
horizontal.  For points with arbitrary Kx and Ky coordinates the 
stripes are oblique. The angle of the stripe pattern is such that the 
strip density in x and y corresponds to the spatial frequency of the 
Kx and Ky component of the point in K-space.  Remarkably, by 
combining all the points in K-space with their corresponding stripe 
amplitudes and frequencies, we generate the head image shown in 
FIGURE 20.    
 
 In summary, we see that the K-space representation is 
simply a short hand graphical notation which tells us the family of 
stripe functions, such that when they are added together,  provide the 
desired image.  The relation between the K-space representation of 
the image and the image is through a 2 dimensional Fourier 
transform. If we need to create an image with 256x256= 216 pixels in 
the image domain, the number of points in the K-space domain 
needed to characterize this image must also be 216 points.  
 
 
How the MR Imager Encodes Spatial Information 
 
 In the preceding section, we discussed the relation between 
the K-space domain and the image domain.  In the remaining section, 
we discuss how the MR imaging system generates data directly in the 
K-space domain.  We now recognize that the K-space domain, represents the image data as stripe functions of 
varying orientation, spatial frequency and amplitude.  The question we address in this section, is how the MR 
imaging system generates these stripe functions and how it determines their correct amplitude, so that when added 
together, form the final image.   
 
Motions of Spins in a Gradient 
 Before we proceed further, it is helpful to change our representation of the magnetization that we discussed 
in the preceding sections from a vector to something simpler.  Specifically, rather than drawing a rotating vector 
which induces a signal in the coil, let us represent the magnetization by a sphere.  The sphere will rotate on its axis 
with one side of the sphere colored black, while the other side is white as shown in FIGURE 26.  As the 

magnetization rotates, the sphere revolves about its axis showing 
a progressive change from the white side to the black side.  By 
looking at the progression of the color of the sphere, we can see 
the progression of the phase of the spin as it evolves in varying 
magnetic environments.   
 For our first example, let us consider a square array of 
balls as shown in FIGURE 27.  After the excitation is created, the 
magnetization of each spin is in phase, and as such, all the balls 
are in the same orientation, showing the white face of each ball.  
Next we will consider the application of a gradient in the x-
direction as shown by the graph of the gradient (right side of 
FIGURE 28) and the resulting magnetic field deviation shown at 
the bottom of this figure.  When the gradient is applied, the balls 
experience slightly different magnetic fields.  On the extreme left 
side, the magnetic field deviation is negative and causes the balls 
to rotate in a clockwise manner in the rotation frame. As we 

Figure 24.  The K-space representation 
(left) of the Fourier components to create the 
target function (right). 

Fourier Transform Representation

Figure 25.  Various points in K-space 
(center) and their corresponding “stripe” 
functions in the image domain. 

Figure 26.  Using a rotating bi-colored sphere 
to represent the rotating transverse 



consider balls towards the centre of the array, the rotation rate of the balls decrease until we reach the centre ball 
where the magnetic field deviation is zero.  Continuing further to the right, we see that the field is increasing 

gradually and results in a counter clockwise rotation rate of gradually increasing frequency.  If we consider a later 
time (FIGURE 28) in the gradient evolution, we see that the balls are arranged to show varying degrees of black and 
white and a vertical stripe pattern emerges. The density of 
the stripe pattern (ie the spatial frequency), increases with 
the gradient evolution or the area under the gradient 
waveform (the red region of FIGURE 28). By orienting the 
gradient horizontally (along the X-axis), the stripe pattern 
is vertical.  To create a horizontal stripe pattern, we apply 
the gradient along the Y-axis and see a progression of 
stripe density evolution with increasing gradient 
application as shown in FIGURE 29.  Thus by application 
of a gradient in either the horizontal or vertical directions, 
we can generate stripes in the vertical and horizontal 
directions respectively.  With increasing exposure to these 
gradients, the spatial frequency of the stripe pattern 
increases in proportion to the area under the gradient-time 
plot (shown red or green in FIGURES 28 and 29).    
 
Stripe Patterns of Arbitrary Orientation and Spatial Frequency 
 
 In order to generate a stripe pattern in an arbitrary 
direction, we consider the use of two gradients in sequence.  This 
is shown in FIGURE 30, where we show a plot of the gradient in 
Gy and Gx as a function of time.  As shown, the amplitude of the 
Gy gradient waveform is incremented in steps (with fixed 
duration) after which a fixed Gx gradient waveform is applied.  
We also consider a plot were we trace out a trajectory which 
corresponds to the area of the gradient waveforms as they 
evolve.  In this plot the horizontal axis is the area of the Gx 
gradient (red area) and the vertical axis is the area under the Gy 
gradient (green area).  Recall that the spatial frequency of the 
stripe pattern increases with increasing exposure to a gradient 
and is represented by the area of the under the gradient 
waveform.  Thus the area of the Gx gradient corresponds to the 
spatial frequency Kx while the area under the Gy gradient 
corresponds to the value of Ky.  Thus, as we increment the Gy 
gradient amplitude, a point on this plot moves progressively 
along the Ky axis.  After each Gy gradient application, the 
evolution of the Gx gradient causes that point to progress along 

Figure 27.  An array of spins just before the 
application of a Gx gradient. 

Figure 28.  The application of a Gx gradient on 
the phase of the array of balls to create vertically 
oriented stripe patterns with increase in density 
with increasing Gx area (red). 

Figure 29.  The application of a Gy gradient 
creates horizontally oriented stripe patterns. 

Figure 30.  Creating stripe patterns in arbitrary 
directions with the sequential application of Gy 
and Gx gradients.  A K-space plot traces out the 
area of the Gx and Gy gradient for the Kx and Ky 
locations respectively. 



Figure 31.  The signal detected during the Gx 
gradient becomes the weighting of the K-space 
data for each line in K-space. 

the Kx direction.  Thus by combined application of the Gx and Gy gradients, we can move throughout all points in 
the K-space plot.  To show that the combined application of Gx and Gy creates oblique strip patterns of varying 
spatial frequency, we consider the application of an intermediate choice of Gy followed by the Gx gradient in 
FIGURE 30 which illustrates one trajectory through K-space.  However, if we considered all possible combinations 
of incremented Gy waveforms followed by the Gx gradient, we would have created all possible combinations of 
stripe orientation and spatial frequency for a Fourier representation of the object.   
 
Determining the K-Space Amplitude of the Stripe Pattern 
 At this point in our discussion, we have shown how the 
application of gradients can create stripe patterns of varying 
orientation and spatial frequency. The only remaining issue to 
illustrate, is how the MR imaging system determines the correct 
amplitude for each spatial frequency needed to correctly encode 
the object.  This is done by measuring the time dependent 
magnetization of the object during the application of the Gx 
gradient (FIGURE 31).  Here, we represent the object as a 
transverse head image made up of our tiny magnetization spheres.  
During the application of the gradient, the spheres generate the 
stripe patterns that we have discussed above and generate an NMR 
signal which is induced in the RF coil.  This signal is sampled 
periodically during the application of the Gx gradient to created a 
detected NMR signal.  The amplitude of this signal corresponds to 
the desired K-space amplitude for each point in the K-space plot. 
After repeated applications of all the Gy and Gx gradients, the full 
K-space representation is complete.  

 
Final MRI Pulse Sequence 
 We can summarize what we have said about the K-space plot and now build a complete MRI pulse 
sequence as shown in FIGURE 32.  During the RF pulse, a slice is selected in the presence of a Gz gradient.  Then 

an incremented Gy gradient is used to precede the Gx 
gradient waveform.  The NMR signal or echo is “sampled” 
during the application of the Gx gradient.  The sampled data 
is then applied to the corresponding trajectory in K-space to 
dictate the brightness of the K-space data.  If N by N pixels in 
the x and y direction are needed in the final image, then we 
must sample the echo with N times for each of N incremented 
Gy gradient waveforms. This indicates that N separate echoes 
are needed in order to collect the N incremented Gy gradient 
applications. The timing between the successive Gy gradients 
is TR seconds and is the parameter used to control the T1 
weighting of the image as discussed above. Similarly, the 
time between the selective excitation pulse and the peak of 
the echo formation is the TE time and is used to determine 
the amount of T2* weighting in an image. 
 

Conclusions and Final Comments 
 In this summary of the ISMRM lecture, we have attempted to summarize the physics of NMR and the 
dynamics of proton ‘spin gymnastics’ that work together to make MRI possible.  We see that the traditional means 
of describing how frequency and phase encoding have not been mentioned in this presentation.  Rather, we describe 
how the application of Gx and Gy gradients in tandem can provide all the data needed to provide a Fourier 
representation of the object.  While the intuitively simple notion of frequency encoding is straight forward, it does 
not translate smoothly into a correspondingly simple interpretation of phase encoding.  As such, the perception is 
often held that frequency and phase encoding are different concepts which can be misleading.  However, as 
presented here, it should be clear that frequency and phase encoding are indeed slightly different ways of achieving 
the same thing, that is to generate the stripe patterns needed to collect the K-space data of the object. 
 

Figure 32.  The final MR pulse sequence needed to 
scan throughout K-space showing the meaning of TR 
and TE to control image contrast.  



Further Reading 
 
A number of excellent texts have been written on the subject of MRI.  I would recommend the following.  
 

1) Magnetic Resonance Imaging; eds DD Stark and WG Bradley. Mosby Year Book. 2nd edition. 1992.  A 
thorough but slightly dated text. 

2) Magnetic Resonance Imaging. Physical Principles and Sequence Design.  EM Haacke, RW Brown, MR 
Thompson R Venkatesan. Wilely-Liss. 1999.  A more complete and somewhat theoretically oriented text.  
An excellent text for graduate students interested in MRI. 

3) Principles of Nuclear Magnetic Resonance Micropscopy. Paul T Callaghan. Oxford Science Publications, 
1991. Again a slightly older text, but thorough with an interested emphasis on high resolution imaging.  

 
Furthermore a number of very introductory online tutorials on MRI are available.  I would recommend the 
following: 
 

1) http://www.hull.ac.uk/mri/lectures/Gpl%20web%20page/gpl_page.html 
2) http://www.mritutor.org/mritutor/ 
3) http://www.cis.rit.edu/htbooks/mri/ 
 

   


